This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
ftp
Metamath Proof Explorer
Theorem ftp
Description: A function with a domain of three elements. (Contributed by Stefan
O'Rear , 17-Oct-2014) (Proof shortened by Alexander van der Vekens , 23-Jan-2018)
Ref
Expression
Hypotheses
ftp.a
⊢ A ∈ V
ftp.b
⊢ B ∈ V
ftp.c
⊢ C ∈ V
ftp.d
⊢ X ∈ V
ftp.e
⊢ Y ∈ V
ftp.f
⊢ Z ∈ V
ftp.g
⊢ A ≠ B
ftp.h
⊢ A ≠ C
ftp.i
⊢ B ≠ C
Assertion
ftp
⊢ A X B Y C Z : A B C ⟶ X Y Z
Proof
Step
Hyp
Ref
Expression
1
ftp.a
⊢ A ∈ V
2
ftp.b
⊢ B ∈ V
3
ftp.c
⊢ C ∈ V
4
ftp.d
⊢ X ∈ V
5
ftp.e
⊢ Y ∈ V
6
ftp.f
⊢ Z ∈ V
7
ftp.g
⊢ A ≠ B
8
ftp.h
⊢ A ≠ C
9
ftp.i
⊢ B ≠ C
10
1 2 3
3pm3.2i
⊢ A ∈ V ∧ B ∈ V ∧ C ∈ V
11
4 5 6
3pm3.2i
⊢ X ∈ V ∧ Y ∈ V ∧ Z ∈ V
12
7 8 9
3pm3.2i
⊢ A ≠ B ∧ A ≠ C ∧ B ≠ C
13
ftpg
⊢ A ∈ V ∧ B ∈ V ∧ C ∈ V ∧ X ∈ V ∧ Y ∈ V ∧ Z ∈ V ∧ A ≠ B ∧ A ≠ C ∧ B ≠ C → A X B Y C Z : A B C ⟶ X Y Z
14
10 11 12 13
mp3an
⊢ A X B Y C Z : A B C ⟶ X Y Z