This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula building theorem for finite support: operator with left annihilator. Finite support version of suppssov1 . (Contributed by SN, 26-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppssov1.s | |- ( ph -> ( x e. D |-> A ) finSupp Y ) |
|
| fsuppssov1.o | |- ( ( ph /\ v e. R ) -> ( Y O v ) = Z ) |
||
| fsuppssov1.a | |- ( ( ph /\ x e. D ) -> A e. V ) |
||
| fsuppssov1.b | |- ( ( ph /\ x e. D ) -> B e. R ) |
||
| fsuppssov1.z | |- ( ph -> Z e. W ) |
||
| Assertion | fsuppssov1 | |- ( ph -> ( x e. D |-> ( A O B ) ) finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppssov1.s | |- ( ph -> ( x e. D |-> A ) finSupp Y ) |
|
| 2 | fsuppssov1.o | |- ( ( ph /\ v e. R ) -> ( Y O v ) = Z ) |
|
| 3 | fsuppssov1.a | |- ( ( ph /\ x e. D ) -> A e. V ) |
|
| 4 | fsuppssov1.b | |- ( ( ph /\ x e. D ) -> B e. R ) |
|
| 5 | fsuppssov1.z | |- ( ph -> Z e. W ) |
|
| 6 | relfsupp | |- Rel finSupp |
|
| 7 | 6 | brrelex1i | |- ( ( x e. D |-> A ) finSupp Y -> ( x e. D |-> A ) e. _V ) |
| 8 | 1 7 | syl | |- ( ph -> ( x e. D |-> A ) e. _V ) |
| 9 | 3 | fmpttd | |- ( ph -> ( x e. D |-> A ) : D --> V ) |
| 10 | dmfex | |- ( ( ( x e. D |-> A ) e. _V /\ ( x e. D |-> A ) : D --> V ) -> D e. _V ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ph -> D e. _V ) |
| 12 | 11 | mptexd | |- ( ph -> ( x e. D |-> ( A O B ) ) e. _V ) |
| 13 | funmpt | |- Fun ( x e. D |-> ( A O B ) ) |
|
| 14 | 13 | a1i | |- ( ph -> Fun ( x e. D |-> ( A O B ) ) ) |
| 15 | ssidd | |- ( ph -> ( ( x e. D |-> A ) supp Y ) C_ ( ( x e. D |-> A ) supp Y ) ) |
|
| 16 | 6 | brrelex2i | |- ( ( x e. D |-> A ) finSupp Y -> Y e. _V ) |
| 17 | 1 16 | syl | |- ( ph -> Y e. _V ) |
| 18 | 15 2 3 4 17 | suppssov1 | |- ( ph -> ( ( x e. D |-> ( A O B ) ) supp Z ) C_ ( ( x e. D |-> A ) supp Y ) ) |
| 19 | 12 5 14 1 18 | fsuppsssuppgd | |- ( ph -> ( x e. D |-> ( A O B ) ) finSupp Z ) |