This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsumzcl2 | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a | ⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 | |
| 4 | 1 2 3 | cbvsum | ⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑥 ∈ 𝐴 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → 𝐴 ∈ Fin ) | |
| 6 | rspcsbela | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) | |
| 7 | 6 | expcom | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ → ( 𝑥 ∈ 𝐴 → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ( 𝑥 ∈ 𝐴 → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 10 | 5 9 | fsumzcl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → Σ 𝑥 ∈ 𝐴 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 11 | 4 10 | eqeltrid | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |