This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsumzcl2 | |- ( ( A e. Fin /\ A. k e. A B e. ZZ ) -> sum_ k e. A B e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a | |- ( k = x -> B = [_ x / k ]_ B ) |
|
| 2 | nfcv | |- F/_ x B |
|
| 3 | nfcsb1v | |- F/_ k [_ x / k ]_ B |
|
| 4 | 1 2 3 | cbvsum | |- sum_ k e. A B = sum_ x e. A [_ x / k ]_ B |
| 5 | simpl | |- ( ( A e. Fin /\ A. k e. A B e. ZZ ) -> A e. Fin ) |
|
| 6 | rspcsbela | |- ( ( x e. A /\ A. k e. A B e. ZZ ) -> [_ x / k ]_ B e. ZZ ) |
|
| 7 | 6 | expcom | |- ( A. k e. A B e. ZZ -> ( x e. A -> [_ x / k ]_ B e. ZZ ) ) |
| 8 | 7 | adantl | |- ( ( A e. Fin /\ A. k e. A B e. ZZ ) -> ( x e. A -> [_ x / k ]_ B e. ZZ ) ) |
| 9 | 8 | imp | |- ( ( ( A e. Fin /\ A. k e. A B e. ZZ ) /\ x e. A ) -> [_ x / k ]_ B e. ZZ ) |
| 10 | 5 9 | fsumzcl | |- ( ( A e. Fin /\ A. k e. A B e. ZZ ) -> sum_ x e. A [_ x / k ]_ B e. ZZ ) |
| 11 | 4 10 | eqeltrid | |- ( ( A e. Fin /\ A. k e. A B e. ZZ ) -> sum_ k e. A B e. ZZ ) |