This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frrrel.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| Assertion | frrdmcl | ⊢ ( 𝑋 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrrel.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 2 | predeq3 | ⊢ ( 𝑧 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑧 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| 3 | 2 | sseq1d | ⊢ ( 𝑧 = 𝑋 → ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝐹 ) ) |
| 4 | eqid | ⊢ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 5 | 4 1 | frrlem8 | ⊢ ( 𝑧 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 6 | 3 5 | vtoclga | ⊢ ( 𝑋 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝐹 ) |