This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Well-founded recursion
frrdmcl
Metamath Proof Explorer
Description: Show without using the axiom of replacement that for a "function"
defined by well-founded recursion, the predecessor class of an element
of its domain is a subclass of its domain. (Contributed by Scott
Fenton , 21-Apr-2011) (Proof shortened by Scott Fenton , 17-Nov-2024)
Ref
Expression
Hypothesis
frrrel.1
⊢ F = frecs ⁡ R A G
Assertion
frrdmcl
⊢ X ∈ dom ⁡ F → Pred R A X ⊆ dom ⁡ F
Proof
Step
Hyp
Ref
Expression
1
frrrel.1
⊢ F = frecs ⁡ R A G
2
predeq3
⊢ z = X → Pred R A z = Pred R A X
3
2
sseq1d
⊢ z = X → Pred R A z ⊆ dom ⁡ F ↔ Pred R A X ⊆ dom ⁡ F
4
eqid
⊢ f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y = f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y
5
4 1
frrlem8
⊢ z ∈ dom ⁡ F → Pred R A z ⊆ dom ⁡ F
6
3 5
vtoclga
⊢ X ∈ dom ⁡ F → Pred R A X ⊆ dom ⁡ F