This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a well-founded set satisfies a property ph , then there is a minimal element that satisfies ph . (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frminex.1 | ⊢ 𝐴 ∈ V | |
| frminex.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | frminex | ⊢ ( 𝑅 Fr 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frminex.1 | ⊢ 𝐴 ∈ V | |
| 2 | frminex.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | rabn0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 4 | 1 | rabex | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V |
| 5 | ssrab2 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 | |
| 6 | fri | ⊢ ( ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ) ) → ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ¬ 𝑦 𝑅 𝑧 ) | |
| 7 | 2 | ralrab | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ¬ 𝑦 𝑅 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ) |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ¬ 𝑦 𝑅 𝑧 ↔ ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ) |
| 9 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑅 𝑥 ) ) | |
| 10 | 9 | notbid | ⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑦 𝑅 𝑧 ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ↔ ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 13 | 12 | rexrab2 | ⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 14 | 8 13 | bitri | ⊢ ( ∃ 𝑧 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ¬ 𝑦 𝑅 𝑧 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 15 | 6 14 | sylib | ⊢ ( ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 16 | 15 | an4s | ⊢ ( ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ) ∧ ( 𝑅 Fr 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 17 | 4 5 16 | mpanl12 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 18 | 17 | ex | ⊢ ( 𝑅 Fr 𝐴 → ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) ) |
| 19 | 3 18 | biimtrrid | ⊢ ( 𝑅 Fr 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝜓 → ¬ 𝑦 𝑅 𝑥 ) ) ) ) |