This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
fprodreclf
Metamath Proof Explorer
Description: Closure of a finite product of real numbers. A version of fprodrecl using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi , 5-Apr-2020)
Ref
Expression
Hypotheses
fprodreclf.kph
⊢ Ⅎ k φ
fprodcl.a
⊢ φ → A ∈ Fin
fprodrecl.b
⊢ φ ∧ k ∈ A → B ∈ ℝ
Assertion
fprodreclf
⊢ φ → ∏ k ∈ A B ∈ ℝ
Proof
Step
Hyp
Ref
Expression
1
fprodreclf.kph
⊢ Ⅎ k φ
2
fprodcl.a
⊢ φ → A ∈ Fin
3
fprodrecl.b
⊢ φ ∧ k ∈ A → B ∈ ℝ
4
ax-resscn
⊢ ℝ ⊆ ℂ
5
4
a1i
⊢ φ → ℝ ⊆ ℂ
6
remulcl
⊢ x ∈ ℝ ∧ y ∈ ℝ → x ⁢ y ∈ ℝ
7
6
adantl
⊢ φ ∧ x ∈ ℝ ∧ y ∈ ℝ → x ⁢ y ∈ ℝ
8
1red
⊢ φ → 1 ∈ ℝ
9
1 5 7 2 3 8
fprodcllemf
⊢ φ → ∏ k ∈ A B ∈ ℝ