This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcllem.1 | |- ( ph -> S C_ CC ) |
|
| fprodcllem.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
||
| fprodcllem.3 | |- ( ph -> A e. Fin ) |
||
| fprodcllem.4 | |- ( ( ph /\ k e. A ) -> B e. S ) |
||
| fprodcllem.5 | |- ( ph -> 1 e. S ) |
||
| Assertion | fprodcllem | |- ( ph -> prod_ k e. A B e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcllem.1 | |- ( ph -> S C_ CC ) |
|
| 2 | fprodcllem.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
|
| 3 | fprodcllem.3 | |- ( ph -> A e. Fin ) |
|
| 4 | fprodcllem.4 | |- ( ( ph /\ k e. A ) -> B e. S ) |
|
| 5 | fprodcllem.5 | |- ( ph -> 1 e. S ) |
|
| 6 | prodeq1 | |- ( A = (/) -> prod_ k e. A B = prod_ k e. (/) B ) |
|
| 7 | prod0 | |- prod_ k e. (/) B = 1 |
|
| 8 | 6 7 | eqtrdi | |- ( A = (/) -> prod_ k e. A B = 1 ) |
| 9 | 8 | adantl | |- ( ( ph /\ A = (/) ) -> prod_ k e. A B = 1 ) |
| 10 | 5 | adantr | |- ( ( ph /\ A = (/) ) -> 1 e. S ) |
| 11 | 9 10 | eqeltrd | |- ( ( ph /\ A = (/) ) -> prod_ k e. A B e. S ) |
| 12 | 1 | adantr | |- ( ( ph /\ A =/= (/) ) -> S C_ CC ) |
| 13 | 2 | adantlr | |- ( ( ( ph /\ A =/= (/) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 14 | 3 | adantr | |- ( ( ph /\ A =/= (/) ) -> A e. Fin ) |
| 15 | 4 | adantlr | |- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> B e. S ) |
| 16 | simpr | |- ( ( ph /\ A =/= (/) ) -> A =/= (/) ) |
|
| 17 | 12 13 14 15 16 | fprodcl2lem | |- ( ( ph /\ A =/= (/) ) -> prod_ k e. A B e. S ) |
| 18 | 11 17 | pm2.61dane | |- ( ph -> prod_ k e. A B e. S ) |