This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fniniseg
Metamath Proof Explorer
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro , 12-May-2014) (Proof shortened by Mario Carneiro , 28-Apr-2015)
Ref
Expression
Assertion
fniniseg
⊢ F Fn A → C ∈ F -1 B ↔ C ∈ A ∧ F ⁡ C = B
Proof
Step
Hyp
Ref
Expression
1
elpreima
⊢ F Fn A → C ∈ F -1 B ↔ C ∈ A ∧ F ⁡ C ∈ B
2
fvex
⊢ F ⁡ C ∈ V
3
2
elsn
⊢ F ⁡ C ∈ B ↔ F ⁡ C = B
4
3
anbi2i
⊢ C ∈ A ∧ F ⁡ C ∈ B ↔ C ∈ A ∧ F ⁡ C = B
5
1 4
bitrdi
⊢ F Fn A → C ∈ F -1 B ↔ C ∈ A ∧ F ⁡ C = B