This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | ||
| flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | ||
| Assertion | fliftfuns | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| 2 | flift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑅 ) | |
| 3 | flift.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑆 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 〈 𝐴 , 𝐵 〉 | |
| 5 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 | |
| 6 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 7 | 5 6 | nfop | ⊢ Ⅎ 𝑥 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 |
| 8 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) | |
| 9 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 10 | 8 9 | opeq12d | ⊢ ( 𝑥 = 𝑦 → 〈 𝐴 , 𝐵 〉 = 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
| 11 | 4 7 10 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ( 𝑦 ∈ 𝑋 ↦ 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
| 12 | 11 | rneqi | ⊢ ran ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ran ( 𝑦 ∈ 𝑋 ↦ 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
| 13 | 1 12 | eqtri | ⊢ 𝐹 = ran ( 𝑦 ∈ 𝑋 ↦ 〈 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 〉 ) |
| 14 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 ) |
| 15 | 5 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 |
| 16 | 8 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑅 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 ) ) |
| 17 | 15 16 | rspc | ⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 ) ) |
| 18 | 14 17 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑅 ) |
| 19 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 ) |
| 20 | 6 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 |
| 21 | 9 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑆 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 ) ) |
| 22 | 20 21 | rspc | ⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 ) ) |
| 23 | 19 22 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑆 ) |
| 24 | csbeq1 | ⊢ ( 𝑦 = 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) | |
| 25 | csbeq1 | ⊢ ( 𝑦 = 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 26 | 13 18 23 24 25 | fliftfun | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |