This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
||
| flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
||
| Assertion | fliftfuns | |- ( ph -> ( Fun F <-> A. y e. X A. z e. X ( [_ y / x ]_ A = [_ z / x ]_ A -> [_ y / x ]_ B = [_ z / x ]_ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| 2 | flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
|
| 3 | flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
|
| 4 | nfcv | |- F/_ y <. A , B >. |
|
| 5 | nfcsb1v | |- F/_ x [_ y / x ]_ A |
|
| 6 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 7 | 5 6 | nfop | |- F/_ x <. [_ y / x ]_ A , [_ y / x ]_ B >. |
| 8 | csbeq1a | |- ( x = y -> A = [_ y / x ]_ A ) |
|
| 9 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 10 | 8 9 | opeq12d | |- ( x = y -> <. A , B >. = <. [_ y / x ]_ A , [_ y / x ]_ B >. ) |
| 11 | 4 7 10 | cbvmpt | |- ( x e. X |-> <. A , B >. ) = ( y e. X |-> <. [_ y / x ]_ A , [_ y / x ]_ B >. ) |
| 12 | 11 | rneqi | |- ran ( x e. X |-> <. A , B >. ) = ran ( y e. X |-> <. [_ y / x ]_ A , [_ y / x ]_ B >. ) |
| 13 | 1 12 | eqtri | |- F = ran ( y e. X |-> <. [_ y / x ]_ A , [_ y / x ]_ B >. ) |
| 14 | 2 | ralrimiva | |- ( ph -> A. x e. X A e. R ) |
| 15 | 5 | nfel1 | |- F/ x [_ y / x ]_ A e. R |
| 16 | 8 | eleq1d | |- ( x = y -> ( A e. R <-> [_ y / x ]_ A e. R ) ) |
| 17 | 15 16 | rspc | |- ( y e. X -> ( A. x e. X A e. R -> [_ y / x ]_ A e. R ) ) |
| 18 | 14 17 | mpan9 | |- ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. R ) |
| 19 | 3 | ralrimiva | |- ( ph -> A. x e. X B e. S ) |
| 20 | 6 | nfel1 | |- F/ x [_ y / x ]_ B e. S |
| 21 | 9 | eleq1d | |- ( x = y -> ( B e. S <-> [_ y / x ]_ B e. S ) ) |
| 22 | 20 21 | rspc | |- ( y e. X -> ( A. x e. X B e. S -> [_ y / x ]_ B e. S ) ) |
| 23 | 19 22 | mpan9 | |- ( ( ph /\ y e. X ) -> [_ y / x ]_ B e. S ) |
| 24 | csbeq1 | |- ( y = z -> [_ y / x ]_ A = [_ z / x ]_ A ) |
|
| 25 | csbeq1 | |- ( y = z -> [_ y / x ]_ B = [_ z / x ]_ B ) |
|
| 26 | 13 18 23 24 25 | fliftfun | |- ( ph -> ( Fun F <-> A. y e. X A. z e. X ( [_ y / x ]_ A = [_ z / x ]_ A -> [_ y / x ]_ B = [_ z / x ]_ B ) ) ) |