This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word is a word over the symbols it consists of. (Contributed by AV, 1-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdsymb | ⊢ ( 𝑆 ∈ Word 𝐴 → 𝑆 ∈ Word ( 𝑆 “ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdf | ⊢ ( 𝑆 ∈ Word 𝐴 → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐴 ) | |
| 2 | fimadmfo | ⊢ ( 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐴 → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) –onto→ ( 𝑆 “ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) | |
| 3 | fof | ⊢ ( 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) –onto→ ( 𝑆 “ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ ( 𝑆 “ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝑆 ∈ Word 𝐴 → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ ( 𝑆 “ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) |
| 5 | iswrdb | ⊢ ( 𝑆 ∈ Word ( 𝑆 “ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ↔ 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ ( 𝑆 “ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) | |
| 6 | 4 5 | sylibr | ⊢ ( 𝑆 ∈ Word 𝐴 → 𝑆 ∈ Word ( 𝑆 “ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) |