This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Festino", one of the syllogisms of Aristotelian logic. No ph is ps , and some ch is ps , therefore some ch is not ph . In Aristotelian notation, EIO-2: PeM and SiM therefore SoP. (Contributed by David A. Wheeler, 25-Nov-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | festino.maj | ⊢ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) | |
| festino.min | ⊢ ∃ 𝑥 ( 𝜒 ∧ 𝜓 ) | ||
| Assertion | festino | ⊢ ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | festino.maj | ⊢ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) | |
| 2 | festino.min | ⊢ ∃ 𝑥 ( 𝜒 ∧ 𝜓 ) | |
| 3 | con2 | ⊢ ( ( 𝜑 → ¬ 𝜓 ) → ( 𝜓 → ¬ 𝜑 ) ) | |
| 4 | 3 | anim2d | ⊢ ( ( 𝜑 → ¬ 𝜓 ) → ( ( 𝜒 ∧ 𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) ) ) |
| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) → ∀ 𝑥 ( ( 𝜒 ∧ 𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) ) ) |
| 6 | 1 5 | ax-mp | ⊢ ∀ 𝑥 ( ( 𝜒 ∧ 𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) ) |
| 7 | exim | ⊢ ( ∀ 𝑥 ( ( 𝜒 ∧ 𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) ) → ( ∃ 𝑥 ( 𝜒 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) ) ) | |
| 8 | 6 2 7 | mp2 | ⊢ ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) |