This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of festino , shorter but using more axioms. See comment of dariiALT . (Contributed by David A. Wheeler, 27-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | festino.maj | ⊢ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) | |
| festino.min | ⊢ ∃ 𝑥 ( 𝜒 ∧ 𝜓 ) | ||
| Assertion | festinoALT | ⊢ ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | festino.maj | ⊢ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) | |
| 2 | festino.min | ⊢ ∃ 𝑥 ( 𝜒 ∧ 𝜓 ) | |
| 3 | 1 | spi | ⊢ ( 𝜑 → ¬ 𝜓 ) |
| 4 | 3 | con2i | ⊢ ( 𝜓 → ¬ 𝜑 ) |
| 5 | 4 | anim2i | ⊢ ( ( 𝜒 ∧ 𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) ) |
| 6 | 2 5 | eximii | ⊢ ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) |