This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Festino", one of the syllogisms of Aristotelian logic. No ph is ps , and some ch is ps , therefore some ch is not ph . In Aristotelian notation, EIO-2: PeM and SiM therefore SoP. (Contributed by David A. Wheeler, 25-Nov-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | festino.maj | |- A. x ( ph -> -. ps ) |
|
| festino.min | |- E. x ( ch /\ ps ) |
||
| Assertion | festino | |- E. x ( ch /\ -. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | festino.maj | |- A. x ( ph -> -. ps ) |
|
| 2 | festino.min | |- E. x ( ch /\ ps ) |
|
| 3 | con2 | |- ( ( ph -> -. ps ) -> ( ps -> -. ph ) ) |
|
| 4 | 3 | anim2d | |- ( ( ph -> -. ps ) -> ( ( ch /\ ps ) -> ( ch /\ -. ph ) ) ) |
| 5 | 4 | alimi | |- ( A. x ( ph -> -. ps ) -> A. x ( ( ch /\ ps ) -> ( ch /\ -. ph ) ) ) |
| 6 | 1 5 | ax-mp | |- A. x ( ( ch /\ ps ) -> ( ch /\ -. ph ) ) |
| 7 | exim | |- ( A. x ( ( ch /\ ps ) -> ( ch /\ -. ph ) ) -> ( E. x ( ch /\ ps ) -> E. x ( ch /\ -. ph ) ) ) |
|
| 8 | 6 2 7 | mp2 | |- E. x ( ch /\ -. ph ) |