This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A union of unordered pairs of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oun2prg | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) → ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) : ( { 0 , 1 } ∪ { 2 , 3 } ) –1-1-onto→ ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) | |
| 2 | 0z | ⊢ 0 ∈ ℤ | |
| 3 | 1 2 | jctil | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 0 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) ) |
| 4 | 3 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( 0 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) ) |
| 5 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) | |
| 6 | 1z | ⊢ 1 ∈ ℤ | |
| 7 | 5 6 | jctil | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 1 ∈ ℤ ∧ 𝐵 ∈ 𝑊 ) ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( 1 ∈ ℤ ∧ 𝐵 ∈ 𝑊 ) ) |
| 9 | 4 8 | jca | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( ( 0 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) ∧ ( 1 ∈ ℤ ∧ 𝐵 ∈ 𝑊 ) ) ) |
| 10 | id | ⊢ ( 𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵 ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) → 𝐴 ≠ 𝐵 ) |
| 12 | 0ne1 | ⊢ 0 ≠ 1 | |
| 13 | 11 12 | jctil | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) → ( 0 ≠ 1 ∧ 𝐴 ≠ 𝐵 ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) → ( 0 ≠ 1 ∧ 𝐴 ≠ 𝐵 ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( 0 ≠ 1 ∧ 𝐴 ≠ 𝐵 ) ) |
| 16 | f1oprg | ⊢ ( ( ( 0 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) ∧ ( 1 ∈ ℤ ∧ 𝐵 ∈ 𝑊 ) ) → ( ( 0 ≠ 1 ∧ 𝐴 ≠ 𝐵 ) → { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } : { 0 , 1 } –1-1-onto→ { 𝐴 , 𝐵 } ) ) | |
| 17 | 9 15 16 | sylc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } : { 0 , 1 } –1-1-onto→ { 𝐴 , 𝐵 } ) |
| 18 | simpl | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) → 𝐶 ∈ 𝑋 ) | |
| 19 | 2nn | ⊢ 2 ∈ ℕ | |
| 20 | 18 19 | jctil | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) → ( 2 ∈ ℕ ∧ 𝐶 ∈ 𝑋 ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( 2 ∈ ℕ ∧ 𝐶 ∈ 𝑋 ) ) |
| 22 | simpr | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) → 𝐷 ∈ 𝑌 ) | |
| 23 | 3nn | ⊢ 3 ∈ ℕ | |
| 24 | 22 23 | jctil | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) → ( 3 ∈ ℕ ∧ 𝐷 ∈ 𝑌 ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( 3 ∈ ℕ ∧ 𝐷 ∈ 𝑌 ) ) |
| 26 | 21 25 | jca | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( ( 2 ∈ ℕ ∧ 𝐶 ∈ 𝑋 ) ∧ ( 3 ∈ ℕ ∧ 𝐷 ∈ 𝑌 ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( ( 2 ∈ ℕ ∧ 𝐶 ∈ 𝑋 ) ∧ ( 3 ∈ ℕ ∧ 𝐷 ∈ 𝑌 ) ) ) |
| 28 | id | ⊢ ( 𝐶 ≠ 𝐷 → 𝐶 ≠ 𝐷 ) | |
| 29 | 28 | 3ad2ant3 | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ≠ 𝐷 ) |
| 30 | 2re | ⊢ 2 ∈ ℝ | |
| 31 | 2lt3 | ⊢ 2 < 3 | |
| 32 | 30 31 | ltneii | ⊢ 2 ≠ 3 |
| 33 | 29 32 | jctil | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → ( 2 ≠ 3 ∧ 𝐶 ≠ 𝐷 ) ) |
| 34 | 33 | adantl | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) → ( 2 ≠ 3 ∧ 𝐶 ≠ 𝐷 ) ) |
| 35 | 34 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( 2 ≠ 3 ∧ 𝐶 ≠ 𝐷 ) ) |
| 36 | f1oprg | ⊢ ( ( ( 2 ∈ ℕ ∧ 𝐶 ∈ 𝑋 ) ∧ ( 3 ∈ ℕ ∧ 𝐷 ∈ 𝑌 ) ) → ( ( 2 ≠ 3 ∧ 𝐶 ≠ 𝐷 ) → { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } : { 2 , 3 } –1-1-onto→ { 𝐶 , 𝐷 } ) ) | |
| 37 | 27 35 36 | sylc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } : { 2 , 3 } –1-1-onto→ { 𝐶 , 𝐷 } ) |
| 38 | disjsn2 | ⊢ ( 𝐴 ≠ 𝐶 → ( { 𝐴 } ∩ { 𝐶 } ) = ∅ ) | |
| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) → ( { 𝐴 } ∩ { 𝐶 } ) = ∅ ) |
| 40 | disjsn2 | ⊢ ( 𝐵 ≠ 𝐶 → ( { 𝐵 } ∩ { 𝐶 } ) = ∅ ) | |
| 41 | 40 | 3ad2ant1 | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → ( { 𝐵 } ∩ { 𝐶 } ) = ∅ ) |
| 42 | 39 41 | anim12i | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) → ( ( { 𝐴 } ∩ { 𝐶 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐶 } ) = ∅ ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( ( { 𝐴 } ∩ { 𝐶 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐶 } ) = ∅ ) ) |
| 44 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 45 | 44 | ineq1i | ⊢ ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ( ( { 𝐴 } ∪ { 𝐵 } ) ∩ { 𝐶 } ) |
| 46 | 45 | eqeq1i | ⊢ ( ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ↔ ( ( { 𝐴 } ∪ { 𝐵 } ) ∩ { 𝐶 } ) = ∅ ) |
| 47 | undisj1 | ⊢ ( ( ( { 𝐴 } ∩ { 𝐶 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐶 } ) = ∅ ) ↔ ( ( { 𝐴 } ∪ { 𝐵 } ) ∩ { 𝐶 } ) = ∅ ) | |
| 48 | 46 47 | bitr4i | ⊢ ( ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ↔ ( ( { 𝐴 } ∩ { 𝐶 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐶 } ) = ∅ ) ) |
| 49 | 43 48 | sylibr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ) |
| 50 | disjsn2 | ⊢ ( 𝐴 ≠ 𝐷 → ( { 𝐴 } ∩ { 𝐷 } ) = ∅ ) | |
| 51 | 50 | 3ad2ant3 | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) → ( { 𝐴 } ∩ { 𝐷 } ) = ∅ ) |
| 52 | disjsn2 | ⊢ ( 𝐵 ≠ 𝐷 → ( { 𝐵 } ∩ { 𝐷 } ) = ∅ ) | |
| 53 | 52 | 3ad2ant2 | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) → ( { 𝐵 } ∩ { 𝐷 } ) = ∅ ) |
| 54 | 51 53 | anim12i | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) → ( ( { 𝐴 } ∩ { 𝐷 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐷 } ) = ∅ ) ) |
| 55 | 54 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( ( { 𝐴 } ∩ { 𝐷 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐷 } ) = ∅ ) ) |
| 56 | 44 | ineq1i | ⊢ ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ( ( { 𝐴 } ∪ { 𝐵 } ) ∩ { 𝐷 } ) |
| 57 | 56 | eqeq1i | ⊢ ( ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ↔ ( ( { 𝐴 } ∪ { 𝐵 } ) ∩ { 𝐷 } ) = ∅ ) |
| 58 | undisj1 | ⊢ ( ( ( { 𝐴 } ∩ { 𝐷 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐷 } ) = ∅ ) ↔ ( ( { 𝐴 } ∪ { 𝐵 } ) ∩ { 𝐷 } ) = ∅ ) | |
| 59 | 57 58 | bitr4i | ⊢ ( ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ↔ ( ( { 𝐴 } ∩ { 𝐷 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐷 } ) = ∅ ) ) |
| 60 | 55 59 | sylibr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ) |
| 61 | 49 60 | jca | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ∧ ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ) ) |
| 62 | undisj2 | ⊢ ( ( ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ∧ ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ) ↔ ( { 𝐴 , 𝐵 } ∩ ( { 𝐶 } ∪ { 𝐷 } ) ) = ∅ ) | |
| 63 | df-pr | ⊢ { 𝐶 , 𝐷 } = ( { 𝐶 } ∪ { 𝐷 } ) | |
| 64 | 63 | eqcomi | ⊢ ( { 𝐶 } ∪ { 𝐷 } ) = { 𝐶 , 𝐷 } |
| 65 | 64 | ineq2i | ⊢ ( { 𝐴 , 𝐵 } ∩ ( { 𝐶 } ∪ { 𝐷 } ) ) = ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐷 } ) |
| 66 | 65 | eqeq1i | ⊢ ( ( { 𝐴 , 𝐵 } ∩ ( { 𝐶 } ∪ { 𝐷 } ) ) = ∅ ↔ ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐷 } ) = ∅ ) |
| 67 | 62 66 | bitri | ⊢ ( ( ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ∧ ( { 𝐴 , 𝐵 } ∩ { 𝐷 } ) = ∅ ) ↔ ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐷 } ) = ∅ ) |
| 68 | 61 67 | sylib | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐷 } ) = ∅ ) |
| 69 | df-pr | ⊢ { 0 , 1 } = ( { 0 } ∪ { 1 } ) | |
| 70 | 69 | eqcomi | ⊢ ( { 0 } ∪ { 1 } ) = { 0 , 1 } |
| 71 | 70 | ineq1i | ⊢ ( ( { 0 } ∪ { 1 } ) ∩ { 2 } ) = ( { 0 , 1 } ∩ { 2 } ) |
| 72 | 0ne2 | ⊢ 0 ≠ 2 | |
| 73 | disjsn2 | ⊢ ( 0 ≠ 2 → ( { 0 } ∩ { 2 } ) = ∅ ) | |
| 74 | 72 73 | ax-mp | ⊢ ( { 0 } ∩ { 2 } ) = ∅ |
| 75 | 1ne2 | ⊢ 1 ≠ 2 | |
| 76 | disjsn2 | ⊢ ( 1 ≠ 2 → ( { 1 } ∩ { 2 } ) = ∅ ) | |
| 77 | 75 76 | ax-mp | ⊢ ( { 1 } ∩ { 2 } ) = ∅ |
| 78 | 74 77 | pm3.2i | ⊢ ( ( { 0 } ∩ { 2 } ) = ∅ ∧ ( { 1 } ∩ { 2 } ) = ∅ ) |
| 79 | undisj1 | ⊢ ( ( ( { 0 } ∩ { 2 } ) = ∅ ∧ ( { 1 } ∩ { 2 } ) = ∅ ) ↔ ( ( { 0 } ∪ { 1 } ) ∩ { 2 } ) = ∅ ) | |
| 80 | 78 79 | mpbi | ⊢ ( ( { 0 } ∪ { 1 } ) ∩ { 2 } ) = ∅ |
| 81 | 71 80 | eqtr3i | ⊢ ( { 0 , 1 } ∩ { 2 } ) = ∅ |
| 82 | 70 | ineq1i | ⊢ ( ( { 0 } ∪ { 1 } ) ∩ { 3 } ) = ( { 0 , 1 } ∩ { 3 } ) |
| 83 | 3ne0 | ⊢ 3 ≠ 0 | |
| 84 | 83 | necomi | ⊢ 0 ≠ 3 |
| 85 | disjsn2 | ⊢ ( 0 ≠ 3 → ( { 0 } ∩ { 3 } ) = ∅ ) | |
| 86 | 84 85 | ax-mp | ⊢ ( { 0 } ∩ { 3 } ) = ∅ |
| 87 | 1re | ⊢ 1 ∈ ℝ | |
| 88 | 1lt3 | ⊢ 1 < 3 | |
| 89 | 87 88 | ltneii | ⊢ 1 ≠ 3 |
| 90 | disjsn2 | ⊢ ( 1 ≠ 3 → ( { 1 } ∩ { 3 } ) = ∅ ) | |
| 91 | 89 90 | ax-mp | ⊢ ( { 1 } ∩ { 3 } ) = ∅ |
| 92 | 86 91 | pm3.2i | ⊢ ( ( { 0 } ∩ { 3 } ) = ∅ ∧ ( { 1 } ∩ { 3 } ) = ∅ ) |
| 93 | undisj1 | ⊢ ( ( ( { 0 } ∩ { 3 } ) = ∅ ∧ ( { 1 } ∩ { 3 } ) = ∅ ) ↔ ( ( { 0 } ∪ { 1 } ) ∩ { 3 } ) = ∅ ) | |
| 94 | 92 93 | mpbi | ⊢ ( ( { 0 } ∪ { 1 } ) ∩ { 3 } ) = ∅ |
| 95 | 82 94 | eqtr3i | ⊢ ( { 0 , 1 } ∩ { 3 } ) = ∅ |
| 96 | 81 95 | pm3.2i | ⊢ ( ( { 0 , 1 } ∩ { 2 } ) = ∅ ∧ ( { 0 , 1 } ∩ { 3 } ) = ∅ ) |
| 97 | undisj2 | ⊢ ( ( ( { 0 , 1 } ∩ { 2 } ) = ∅ ∧ ( { 0 , 1 } ∩ { 3 } ) = ∅ ) ↔ ( { 0 , 1 } ∩ ( { 2 } ∪ { 3 } ) ) = ∅ ) | |
| 98 | df-pr | ⊢ { 2 , 3 } = ( { 2 } ∪ { 3 } ) | |
| 99 | 98 | eqcomi | ⊢ ( { 2 } ∪ { 3 } ) = { 2 , 3 } |
| 100 | 99 | ineq2i | ⊢ ( { 0 , 1 } ∩ ( { 2 } ∪ { 3 } ) ) = ( { 0 , 1 } ∩ { 2 , 3 } ) |
| 101 | 100 | eqeq1i | ⊢ ( ( { 0 , 1 } ∩ ( { 2 } ∪ { 3 } ) ) = ∅ ↔ ( { 0 , 1 } ∩ { 2 , 3 } ) = ∅ ) |
| 102 | 97 101 | bitri | ⊢ ( ( ( { 0 , 1 } ∩ { 2 } ) = ∅ ∧ ( { 0 , 1 } ∩ { 3 } ) = ∅ ) ↔ ( { 0 , 1 } ∩ { 2 , 3 } ) = ∅ ) |
| 103 | 96 102 | mpbi | ⊢ ( { 0 , 1 } ∩ { 2 , 3 } ) = ∅ |
| 104 | 68 103 | jctil | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( ( { 0 , 1 } ∩ { 2 , 3 } ) = ∅ ∧ ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐷 } ) = ∅ ) ) |
| 105 | f1oun | ⊢ ( ( ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } : { 0 , 1 } –1-1-onto→ { 𝐴 , 𝐵 } ∧ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } : { 2 , 3 } –1-1-onto→ { 𝐶 , 𝐷 } ) ∧ ( ( { 0 , 1 } ∩ { 2 , 3 } ) = ∅ ∧ ( { 𝐴 , 𝐵 } ∩ { 𝐶 , 𝐷 } ) = ∅ ) ) → ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) : ( { 0 , 1 } ∪ { 2 , 3 } ) –1-1-onto→ ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) ) | |
| 106 | 17 37 104 105 | syl21anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) ) → ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) : ( { 0 , 1 } ∪ { 2 , 3 } ) –1-1-onto→ ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) ) |
| 107 | 106 | ex | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷 ) ) → ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) : ( { 0 , 1 } ∪ { 2 , 3 } ) –1-1-onto→ ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) ) ) |