This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1opw2.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| f1opw2.2 | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ∈ V ) | ||
| f1opw2.3 | ⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ∈ V ) | ||
| Assertion | f1opw2 | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1opw2.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | f1opw2.2 | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ∈ V ) | |
| 3 | f1opw2.3 | ⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ∈ V ) | |
| 4 | eqid | ⊢ ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) = ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) | |
| 5 | imassrn | ⊢ ( 𝐹 “ 𝑏 ) ⊆ ran 𝐹 | |
| 6 | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 8 | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 10 | 5 9 | sseqtrid | ⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ⊆ 𝐵 ) |
| 11 | 3 10 | elpwd | ⊢ ( 𝜑 → ( 𝐹 “ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝐹 “ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 13 | imassrn | ⊢ ( ◡ 𝐹 “ 𝑎 ) ⊆ ran ◡ 𝐹 | |
| 14 | dfdm4 | ⊢ dom 𝐹 = ran ◡ 𝐹 | |
| 15 | f1odm | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 16 | 1 15 | syl | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 17 | 14 16 | eqtr3id | ⊢ ( 𝜑 → ran ◡ 𝐹 = 𝐴 ) |
| 18 | 13 17 | sseqtrid | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
| 19 | 2 18 | elpwd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐵 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
| 21 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑎 ⊆ 𝐵 ) |
| 23 | foimacnv | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) | |
| 24 | 7 22 23 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
| 25 | 24 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 26 | imaeq2 | ⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝐹 “ 𝑏 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) | |
| 27 | 26 | eqeq2d | ⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) ↔ 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
| 28 | 25 27 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 29 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 30 | 1 29 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 31 | elpwi | ⊢ ( 𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴 ) | |
| 32 | 31 | adantr | ⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑏 ⊆ 𝐴 ) |
| 33 | f1imacnv | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑏 ⊆ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) | |
| 34 | 30 32 33 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) |
| 35 | 34 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) |
| 36 | imaeq2 | ⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) | |
| 37 | 36 | eqeq2d | ⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) ) |
| 38 | 35 37 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) → 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 39 | 28 38 | impbid | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 40 | 4 12 20 39 | f1o2d | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝒫 𝐴 ↦ ( 𝐹 “ 𝑏 ) ) : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐵 ) |