This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1opw2.1 | |- ( ph -> F : A -1-1-onto-> B ) |
|
| f1opw2.2 | |- ( ph -> ( `' F " a ) e. _V ) |
||
| f1opw2.3 | |- ( ph -> ( F " b ) e. _V ) |
||
| Assertion | f1opw2 | |- ( ph -> ( b e. ~P A |-> ( F " b ) ) : ~P A -1-1-onto-> ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1opw2.1 | |- ( ph -> F : A -1-1-onto-> B ) |
|
| 2 | f1opw2.2 | |- ( ph -> ( `' F " a ) e. _V ) |
|
| 3 | f1opw2.3 | |- ( ph -> ( F " b ) e. _V ) |
|
| 4 | eqid | |- ( b e. ~P A |-> ( F " b ) ) = ( b e. ~P A |-> ( F " b ) ) |
|
| 5 | imassrn | |- ( F " b ) C_ ran F |
|
| 6 | f1ofo | |- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
|
| 7 | 1 6 | syl | |- ( ph -> F : A -onto-> B ) |
| 8 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 9 | 7 8 | syl | |- ( ph -> ran F = B ) |
| 10 | 5 9 | sseqtrid | |- ( ph -> ( F " b ) C_ B ) |
| 11 | 3 10 | elpwd | |- ( ph -> ( F " b ) e. ~P B ) |
| 12 | 11 | adantr | |- ( ( ph /\ b e. ~P A ) -> ( F " b ) e. ~P B ) |
| 13 | imassrn | |- ( `' F " a ) C_ ran `' F |
|
| 14 | dfdm4 | |- dom F = ran `' F |
|
| 15 | f1odm | |- ( F : A -1-1-onto-> B -> dom F = A ) |
|
| 16 | 1 15 | syl | |- ( ph -> dom F = A ) |
| 17 | 14 16 | eqtr3id | |- ( ph -> ran `' F = A ) |
| 18 | 13 17 | sseqtrid | |- ( ph -> ( `' F " a ) C_ A ) |
| 19 | 2 18 | elpwd | |- ( ph -> ( `' F " a ) e. ~P A ) |
| 20 | 19 | adantr | |- ( ( ph /\ a e. ~P B ) -> ( `' F " a ) e. ~P A ) |
| 21 | elpwi | |- ( a e. ~P B -> a C_ B ) |
|
| 22 | 21 | adantl | |- ( ( b e. ~P A /\ a e. ~P B ) -> a C_ B ) |
| 23 | foimacnv | |- ( ( F : A -onto-> B /\ a C_ B ) -> ( F " ( `' F " a ) ) = a ) |
|
| 24 | 7 22 23 | syl2an | |- ( ( ph /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( F " ( `' F " a ) ) = a ) |
| 25 | 24 | eqcomd | |- ( ( ph /\ ( b e. ~P A /\ a e. ~P B ) ) -> a = ( F " ( `' F " a ) ) ) |
| 26 | imaeq2 | |- ( b = ( `' F " a ) -> ( F " b ) = ( F " ( `' F " a ) ) ) |
|
| 27 | 26 | eqeq2d | |- ( b = ( `' F " a ) -> ( a = ( F " b ) <-> a = ( F " ( `' F " a ) ) ) ) |
| 28 | 25 27 | syl5ibrcom | |- ( ( ph /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( b = ( `' F " a ) -> a = ( F " b ) ) ) |
| 29 | f1of1 | |- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
|
| 30 | 1 29 | syl | |- ( ph -> F : A -1-1-> B ) |
| 31 | elpwi | |- ( b e. ~P A -> b C_ A ) |
|
| 32 | 31 | adantr | |- ( ( b e. ~P A /\ a e. ~P B ) -> b C_ A ) |
| 33 | f1imacnv | |- ( ( F : A -1-1-> B /\ b C_ A ) -> ( `' F " ( F " b ) ) = b ) |
|
| 34 | 30 32 33 | syl2an | |- ( ( ph /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( `' F " ( F " b ) ) = b ) |
| 35 | 34 | eqcomd | |- ( ( ph /\ ( b e. ~P A /\ a e. ~P B ) ) -> b = ( `' F " ( F " b ) ) ) |
| 36 | imaeq2 | |- ( a = ( F " b ) -> ( `' F " a ) = ( `' F " ( F " b ) ) ) |
|
| 37 | 36 | eqeq2d | |- ( a = ( F " b ) -> ( b = ( `' F " a ) <-> b = ( `' F " ( F " b ) ) ) ) |
| 38 | 35 37 | syl5ibrcom | |- ( ( ph /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( a = ( F " b ) -> b = ( `' F " a ) ) ) |
| 39 | 28 38 | impbid | |- ( ( ph /\ ( b e. ~P A /\ a e. ~P B ) ) -> ( b = ( `' F " a ) <-> a = ( F " b ) ) ) |
| 40 | 4 12 20 39 | f1o2d | |- ( ph -> ( b e. ~P A |-> ( F " b ) ) : ~P A -1-1-onto-> ~P B ) |