This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oexbi | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ↔ ∃ 𝑔 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑓 ∈ V | |
| 2 | 1 | cnvex | ⊢ ◡ 𝑓 ∈ V |
| 3 | f1ocnv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 4 | f1oeq1 | ⊢ ( 𝑔 = ◡ 𝑓 → ( 𝑔 : 𝐵 –1-1-onto→ 𝐴 ↔ ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) ) | |
| 5 | 4 | spcegv | ⊢ ( ◡ 𝑓 ∈ V → ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ∃ 𝑔 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) ) |
| 6 | 2 3 5 | mpsyl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ∃ 𝑔 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ∃ 𝑔 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) |
| 8 | vex | ⊢ 𝑔 ∈ V | |
| 9 | 8 | cnvex | ⊢ ◡ 𝑔 ∈ V |
| 10 | f1ocnv | ⊢ ( 𝑔 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 11 | f1oeq1 | ⊢ ( 𝑓 = ◡ 𝑔 → ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ↔ ◡ 𝑔 : 𝐴 –1-1-onto→ 𝐵 ) ) | |
| 12 | 11 | spcegv | ⊢ ( ◡ 𝑔 ∈ V → ( ◡ 𝑔 : 𝐴 –1-1-onto→ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 13 | 9 10 12 | mpsyl | ⊢ ( 𝑔 : 𝐵 –1-1-onto→ 𝐴 → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 14 | 13 | exlimiv | ⊢ ( ∃ 𝑔 𝑔 : 𝐵 –1-1-onto→ 𝐴 → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 15 | 7 14 | impbii | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ↔ ∃ 𝑔 𝑔 : 𝐵 –1-1-onto→ 𝐴 ) |