This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oexbi | |- ( E. f f : A -1-1-onto-> B <-> E. g g : B -1-1-onto-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- f e. _V |
|
| 2 | 1 | cnvex | |- `' f e. _V |
| 3 | f1ocnv | |- ( f : A -1-1-onto-> B -> `' f : B -1-1-onto-> A ) |
|
| 4 | f1oeq1 | |- ( g = `' f -> ( g : B -1-1-onto-> A <-> `' f : B -1-1-onto-> A ) ) |
|
| 5 | 4 | spcegv | |- ( `' f e. _V -> ( `' f : B -1-1-onto-> A -> E. g g : B -1-1-onto-> A ) ) |
| 6 | 2 3 5 | mpsyl | |- ( f : A -1-1-onto-> B -> E. g g : B -1-1-onto-> A ) |
| 7 | 6 | exlimiv | |- ( E. f f : A -1-1-onto-> B -> E. g g : B -1-1-onto-> A ) |
| 8 | vex | |- g e. _V |
|
| 9 | 8 | cnvex | |- `' g e. _V |
| 10 | f1ocnv | |- ( g : B -1-1-onto-> A -> `' g : A -1-1-onto-> B ) |
|
| 11 | f1oeq1 | |- ( f = `' g -> ( f : A -1-1-onto-> B <-> `' g : A -1-1-onto-> B ) ) |
|
| 12 | 11 | spcegv | |- ( `' g e. _V -> ( `' g : A -1-1-onto-> B -> E. f f : A -1-1-onto-> B ) ) |
| 13 | 9 10 12 | mpsyl | |- ( g : B -1-1-onto-> A -> E. f f : A -1-1-onto-> B ) |
| 14 | 13 | exlimiv | |- ( E. g g : B -1-1-onto-> A -> E. f f : A -1-1-onto-> B ) |
| 15 | 7 14 | impbii | |- ( E. f f : A -1-1-onto-> B <-> E. g g : B -1-1-onto-> A ) |