This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of f1cofveqaeq , 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1cofveqaeqALT | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fvco3 | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) | |
| 3 | 2 | adantrr | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 4 | fvco3 | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) | |
| 5 | 4 | adantrl | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) |
| 6 | 3 5 | eqeq12d | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 7 | 6 | ex | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
| 8 | 1 7 | syl | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 11 | f1co | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ) | |
| 12 | f1veqaeq | ⊢ ( ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) | |
| 13 | 11 12 | sylan | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 14 | 10 13 | sylbird | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) ) |