This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exopxfr2.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | exopxfr2 | ⊢ ( Rel 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∃ 𝑧 ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exopxfr2.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-rel | ⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) | |
| 3 | 2 | biimpi | ⊢ ( Rel 𝐴 → 𝐴 ⊆ ( V × V ) ) |
| 4 | 3 | sseld | ⊢ ( Rel 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( V × V ) ) ) |
| 5 | 4 | adantrd | ⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ ( V × V ) ) ) |
| 6 | 5 | pm4.71rd | ⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ ( V × V ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 7 | 6 | rexbidv2 | ⊢ ( Rel 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ ( V × V ) ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 8 | eleq1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐴 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) | |
| 9 | 8 1 | anbi12d | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 10 | 9 | exopxfr | ⊢ ( ∃ 𝑥 ∈ ( V × V ) ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ∧ 𝜓 ) ) |
| 11 | 7 10 | bitrdi | ⊢ ( Rel 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∃ 𝑧 ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ∧ 𝜓 ) ) ) |