This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exopxfr2.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
| Assertion | exopxfr2 | |- ( Rel A -> ( E. x e. A ph <-> E. y E. z ( <. y , z >. e. A /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exopxfr2.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
| 2 | df-rel | |- ( Rel A <-> A C_ ( _V X. _V ) ) |
|
| 3 | 2 | biimpi | |- ( Rel A -> A C_ ( _V X. _V ) ) |
| 4 | 3 | sseld | |- ( Rel A -> ( x e. A -> x e. ( _V X. _V ) ) ) |
| 5 | 4 | adantrd | |- ( Rel A -> ( ( x e. A /\ ph ) -> x e. ( _V X. _V ) ) ) |
| 6 | 5 | pm4.71rd | |- ( Rel A -> ( ( x e. A /\ ph ) <-> ( x e. ( _V X. _V ) /\ ( x e. A /\ ph ) ) ) ) |
| 7 | 6 | rexbidv2 | |- ( Rel A -> ( E. x e. A ph <-> E. x e. ( _V X. _V ) ( x e. A /\ ph ) ) ) |
| 8 | eleq1 | |- ( x = <. y , z >. -> ( x e. A <-> <. y , z >. e. A ) ) |
|
| 9 | 8 1 | anbi12d | |- ( x = <. y , z >. -> ( ( x e. A /\ ph ) <-> ( <. y , z >. e. A /\ ps ) ) ) |
| 10 | 9 | exopxfr | |- ( E. x e. ( _V X. _V ) ( x e. A /\ ph ) <-> E. y E. z ( <. y , z >. e. A /\ ps ) ) |
| 11 | 7 10 | bitrdi | |- ( Rel A -> ( E. x e. A ph <-> E. y E. z ( <. y , z >. e. A /\ ps ) ) ) |