This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-bc . (Contributed by AV, 4-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-bc | ⊢ ( 5 C 3 ) = ; 1 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
| 2 | 1 | oveq1i | ⊢ ( 5 C 3 ) = ( ( 4 + 1 ) C 3 ) |
| 3 | 4bc3eq4 | ⊢ ( 4 C 3 ) = 4 | |
| 4 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 5 | 4 | oveq2i | ⊢ ( 4 C ( 3 − 1 ) ) = ( 4 C 2 ) |
| 6 | 4bc2eq6 | ⊢ ( 4 C 2 ) = 6 | |
| 7 | 5 6 | eqtri | ⊢ ( 4 C ( 3 − 1 ) ) = 6 |
| 8 | 3 7 | oveq12i | ⊢ ( ( 4 C 3 ) + ( 4 C ( 3 − 1 ) ) ) = ( 4 + 6 ) |
| 9 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 10 | 3z | ⊢ 3 ∈ ℤ | |
| 11 | bcpasc | ⊢ ( ( 4 ∈ ℕ0 ∧ 3 ∈ ℤ ) → ( ( 4 C 3 ) + ( 4 C ( 3 − 1 ) ) ) = ( ( 4 + 1 ) C 3 ) ) | |
| 12 | 9 10 11 | mp2an | ⊢ ( ( 4 C 3 ) + ( 4 C ( 3 − 1 ) ) ) = ( ( 4 + 1 ) C 3 ) |
| 13 | 6cn | ⊢ 6 ∈ ℂ | |
| 14 | 4cn | ⊢ 4 ∈ ℂ | |
| 15 | 6p4e10 | ⊢ ( 6 + 4 ) = ; 1 0 | |
| 16 | 13 14 15 | addcomli | ⊢ ( 4 + 6 ) = ; 1 0 |
| 17 | 8 12 16 | 3eqtr3i | ⊢ ( ( 4 + 1 ) C 3 ) = ; 1 0 |
| 18 | 2 17 | eqtri | ⊢ ( 5 C 3 ) = ; 1 0 |