This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 4bc2eq6 | ⊢ ( 4 C 2 ) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | 4z | ⊢ 4 ∈ ℤ | |
| 3 | 2z | ⊢ 2 ∈ ℤ | |
| 4 | 1 2 3 | 3pm3.2i | ⊢ ( 0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ ) |
| 5 | 0le2 | ⊢ 0 ≤ 2 | |
| 6 | 2re | ⊢ 2 ∈ ℝ | |
| 7 | 4re | ⊢ 4 ∈ ℝ | |
| 8 | 2lt4 | ⊢ 2 < 4 | |
| 9 | 6 7 8 | ltleii | ⊢ 2 ≤ 4 |
| 10 | 5 9 | pm3.2i | ⊢ ( 0 ≤ 2 ∧ 2 ≤ 4 ) |
| 11 | elfz4 | ⊢ ( ( ( 0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 0 ≤ 2 ∧ 2 ≤ 4 ) ) → 2 ∈ ( 0 ... 4 ) ) | |
| 12 | 4 10 11 | mp2an | ⊢ 2 ∈ ( 0 ... 4 ) |
| 13 | bcval2 | ⊢ ( 2 ∈ ( 0 ... 4 ) → ( 4 C 2 ) = ( ( ! ‘ 4 ) / ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( 4 C 2 ) = ( ( ! ‘ 4 ) / ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) ) |
| 15 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 16 | facp1 | ⊢ ( 3 ∈ ℕ0 → ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) |
| 18 | df-4 | ⊢ 4 = ( 3 + 1 ) | |
| 19 | 18 | fveq2i | ⊢ ( ! ‘ 4 ) = ( ! ‘ ( 3 + 1 ) ) |
| 20 | 18 | oveq2i | ⊢ ( ( ! ‘ 3 ) · 4 ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) |
| 21 | 17 19 20 | 3eqtr4i | ⊢ ( ! ‘ 4 ) = ( ( ! ‘ 3 ) · 4 ) |
| 22 | 4cn | ⊢ 4 ∈ ℂ | |
| 23 | 2cn | ⊢ 2 ∈ ℂ | |
| 24 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 25 | 22 23 23 24 | subaddrii | ⊢ ( 4 − 2 ) = 2 |
| 26 | 25 | fveq2i | ⊢ ( ! ‘ ( 4 − 2 ) ) = ( ! ‘ 2 ) |
| 27 | fac2 | ⊢ ( ! ‘ 2 ) = 2 | |
| 28 | 26 27 | eqtri | ⊢ ( ! ‘ ( 4 − 2 ) ) = 2 |
| 29 | 28 27 | oveq12i | ⊢ ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) = ( 2 · 2 ) |
| 30 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 31 | 29 30 | eqtri | ⊢ ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) = 4 |
| 32 | 21 31 | oveq12i | ⊢ ( ( ! ‘ 4 ) / ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) ) = ( ( ( ! ‘ 3 ) · 4 ) / 4 ) |
| 33 | faccl | ⊢ ( 3 ∈ ℕ0 → ( ! ‘ 3 ) ∈ ℕ ) | |
| 34 | 15 33 | ax-mp | ⊢ ( ! ‘ 3 ) ∈ ℕ |
| 35 | 34 | nncni | ⊢ ( ! ‘ 3 ) ∈ ℂ |
| 36 | 4ne0 | ⊢ 4 ≠ 0 | |
| 37 | 35 22 36 | divcan4i | ⊢ ( ( ( ! ‘ 3 ) · 4 ) / 4 ) = ( ! ‘ 3 ) |
| 38 | fac3 | ⊢ ( ! ‘ 3 ) = 6 | |
| 39 | 37 38 | eqtri | ⊢ ( ( ( ! ‘ 3 ) · 4 ) / 4 ) = 6 |
| 40 | 32 39 | eqtri | ⊢ ( ( ! ‘ 4 ) / ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) ) = 6 |
| 41 | 14 40 | eqtri | ⊢ ( 4 C 2 ) = 6 |