This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The N -th edge in an eulerian path is the edge having P ( N ) and P ( N + 1 ) as endpoints . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eupths.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | eupthseg | ⊢ ( ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | eupthi | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 ) ) |
| 3 | 2 | simpld | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 4 | 1 | wlkvtxeledg | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) ) | |
| 6 | fvoveq1 | ⊢ ( 𝑘 = 𝑁 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) | |
| 7 | 5 6 | preq12d | ⊢ ( 𝑘 = 𝑁 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
| 8 | 2fveq3 | ⊢ ( 𝑘 = 𝑁 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) | |
| 9 | 7 8 | sseq12d | ⊢ ( 𝑘 = 𝑁 → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 10 | 9 | rspccv | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 11 | 3 4 10 | 3syl | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |