This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euor2 | ⊢ ( ¬ ∃ 𝑥 𝜑 → ( ∃! 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ∃! 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 𝜑 | |
| 2 | 1 | nfn | ⊢ Ⅎ 𝑥 ¬ ∃ 𝑥 𝜑 |
| 3 | 19.8a | ⊢ ( 𝜑 → ∃ 𝑥 𝜑 ) | |
| 4 | biorf | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) | |
| 5 | 4 | bicomd | ⊢ ( ¬ 𝜑 → ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |
| 6 | 3 5 | nsyl5 | ⊢ ( ¬ ∃ 𝑥 𝜑 → ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |
| 7 | 2 6 | eubid | ⊢ ( ¬ ∃ 𝑥 𝜑 → ( ∃! 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ∃! 𝑥 𝜓 ) ) |