This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of eujust illustrating the use of dvelim . (Contributed by NM, 11-Mar-2010) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eujustALT | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) | |
| 2 | 1 | bibi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 3 | 2 | albidv | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 4 | 3 | sps | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 5 | 4 | drex1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 6 | hbnae | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 ) | |
| 7 | hbnae | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 ) | |
| 8 | 6 7 | alrimih | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑦 ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 9 | ax-5 | ⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) → ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ) | |
| 10 | equequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) | |
| 11 | 10 | bibi2d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 12 | 11 | albidv | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 13 | 12 | notbid | ⊢ ( 𝑤 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 14 | 9 13 | dvelim | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 15 | 14 | naecoms | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 16 | ax-5 | ⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) → ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ) | |
| 17 | equequ2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑧 ) ) | |
| 18 | 17 | bibi2d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 19 | 18 | albidv | ⊢ ( 𝑤 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 20 | 19 | notbid | ⊢ ( 𝑤 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 21 | 16 20 | dvelim | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 22 | 3 | notbid | ⊢ ( 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 23 | 22 | a1i | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) ) |
| 24 | 15 21 23 | cbv2h | ⊢ ( ∀ 𝑦 ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 25 | 8 24 | syl | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 26 | 25 | notbid | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 27 | df-ex | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
| 28 | df-ex | ⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ¬ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
| 29 | 26 27 28 | 3bitr4g | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 30 | 5 29 | pm2.61i | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |