This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrcbas.c | |- C = ( ExtStrCat ` U ) |
|
| estrcbas.u | |- ( ph -> U e. V ) |
||
| estrcco.o | |- .x. = ( comp ` C ) |
||
| estrcco.x | |- ( ph -> X e. U ) |
||
| estrcco.y | |- ( ph -> Y e. U ) |
||
| estrcco.z | |- ( ph -> Z e. U ) |
||
| estrcco.a | |- A = ( Base ` X ) |
||
| estrcco.b | |- B = ( Base ` Y ) |
||
| estrcco.d | |- D = ( Base ` Z ) |
||
| estrcco.f | |- ( ph -> F : A --> B ) |
||
| estrcco.g | |- ( ph -> G : B --> D ) |
||
| Assertion | estrcco | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrcbas.c | |- C = ( ExtStrCat ` U ) |
|
| 2 | estrcbas.u | |- ( ph -> U e. V ) |
|
| 3 | estrcco.o | |- .x. = ( comp ` C ) |
|
| 4 | estrcco.x | |- ( ph -> X e. U ) |
|
| 5 | estrcco.y | |- ( ph -> Y e. U ) |
|
| 6 | estrcco.z | |- ( ph -> Z e. U ) |
|
| 7 | estrcco.a | |- A = ( Base ` X ) |
|
| 8 | estrcco.b | |- B = ( Base ` Y ) |
|
| 9 | estrcco.d | |- D = ( Base ` Z ) |
|
| 10 | estrcco.f | |- ( ph -> F : A --> B ) |
|
| 11 | estrcco.g | |- ( ph -> G : B --> D ) |
|
| 12 | 1 2 3 | estrccofval | |- ( ph -> .x. = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) |
| 13 | fveq2 | |- ( z = Z -> ( Base ` z ) = ( Base ` Z ) ) |
|
| 14 | 13 | adantl | |- ( ( v = <. X , Y >. /\ z = Z ) -> ( Base ` z ) = ( Base ` Z ) ) |
| 15 | 14 | adantl | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` z ) = ( Base ` Z ) ) |
| 16 | simprl | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> v = <. X , Y >. ) |
|
| 17 | 16 | fveq2d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = ( 2nd ` <. X , Y >. ) ) |
| 18 | op2ndg | |- ( ( X e. U /\ Y e. U ) -> ( 2nd ` <. X , Y >. ) = Y ) |
|
| 19 | 4 5 18 | syl2anc | |- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 21 | 17 20 | eqtrd | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = Y ) |
| 22 | 21 | fveq2d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` ( 2nd ` v ) ) = ( Base ` Y ) ) |
| 23 | 15 22 | oveq12d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) = ( ( Base ` Z ) ^m ( Base ` Y ) ) ) |
| 24 | 16 | fveq2d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 1st ` v ) = ( 1st ` <. X , Y >. ) ) |
| 25 | 24 | fveq2d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` ( 1st ` v ) ) = ( Base ` ( 1st ` <. X , Y >. ) ) ) |
| 26 | op1stg | |- ( ( X e. U /\ Y e. U ) -> ( 1st ` <. X , Y >. ) = X ) |
|
| 27 | 4 5 26 | syl2anc | |- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
| 28 | 27 | fveq2d | |- ( ph -> ( Base ` ( 1st ` <. X , Y >. ) ) = ( Base ` X ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` ( 1st ` <. X , Y >. ) ) = ( Base ` X ) ) |
| 30 | 25 29 | eqtrd | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` ( 1st ` v ) ) = ( Base ` X ) ) |
| 31 | 22 30 | oveq12d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) = ( ( Base ` Y ) ^m ( Base ` X ) ) ) |
| 32 | eqidd | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g o. f ) = ( g o. f ) ) |
|
| 33 | 23 31 32 | mpoeq123dv | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) = ( g e. ( ( Base ` Z ) ^m ( Base ` Y ) ) , f e. ( ( Base ` Y ) ^m ( Base ` X ) ) |-> ( g o. f ) ) ) |
| 34 | 4 5 | opelxpd | |- ( ph -> <. X , Y >. e. ( U X. U ) ) |
| 35 | ovex | |- ( ( Base ` Z ) ^m ( Base ` Y ) ) e. _V |
|
| 36 | ovex | |- ( ( Base ` Y ) ^m ( Base ` X ) ) e. _V |
|
| 37 | 35 36 | mpoex | |- ( g e. ( ( Base ` Z ) ^m ( Base ` Y ) ) , f e. ( ( Base ` Y ) ^m ( Base ` X ) ) |-> ( g o. f ) ) e. _V |
| 38 | 37 | a1i | |- ( ph -> ( g e. ( ( Base ` Z ) ^m ( Base ` Y ) ) , f e. ( ( Base ` Y ) ^m ( Base ` X ) ) |-> ( g o. f ) ) e. _V ) |
| 39 | 12 33 34 6 38 | ovmpod | |- ( ph -> ( <. X , Y >. .x. Z ) = ( g e. ( ( Base ` Z ) ^m ( Base ` Y ) ) , f e. ( ( Base ` Y ) ^m ( Base ` X ) ) |-> ( g o. f ) ) ) |
| 40 | simpl | |- ( ( g = G /\ f = F ) -> g = G ) |
|
| 41 | simpr | |- ( ( g = G /\ f = F ) -> f = F ) |
|
| 42 | 40 41 | coeq12d | |- ( ( g = G /\ f = F ) -> ( g o. f ) = ( G o. F ) ) |
| 43 | 42 | adantl | |- ( ( ph /\ ( g = G /\ f = F ) ) -> ( g o. f ) = ( G o. F ) ) |
| 44 | 8 | a1i | |- ( ph -> B = ( Base ` Y ) ) |
| 45 | 44 | eqcomd | |- ( ph -> ( Base ` Y ) = B ) |
| 46 | 9 | a1i | |- ( ph -> D = ( Base ` Z ) ) |
| 47 | 46 | eqcomd | |- ( ph -> ( Base ` Z ) = D ) |
| 48 | 45 47 | feq23d | |- ( ph -> ( G : ( Base ` Y ) --> ( Base ` Z ) <-> G : B --> D ) ) |
| 49 | 11 48 | mpbird | |- ( ph -> G : ( Base ` Y ) --> ( Base ` Z ) ) |
| 50 | fvexd | |- ( ph -> ( Base ` Z ) e. _V ) |
|
| 51 | fvexd | |- ( ph -> ( Base ` Y ) e. _V ) |
|
| 52 | 50 51 | elmapd | |- ( ph -> ( G e. ( ( Base ` Z ) ^m ( Base ` Y ) ) <-> G : ( Base ` Y ) --> ( Base ` Z ) ) ) |
| 53 | 49 52 | mpbird | |- ( ph -> G e. ( ( Base ` Z ) ^m ( Base ` Y ) ) ) |
| 54 | 7 | a1i | |- ( ph -> A = ( Base ` X ) ) |
| 55 | 54 | eqcomd | |- ( ph -> ( Base ` X ) = A ) |
| 56 | 55 45 | feq23d | |- ( ph -> ( F : ( Base ` X ) --> ( Base ` Y ) <-> F : A --> B ) ) |
| 57 | 10 56 | mpbird | |- ( ph -> F : ( Base ` X ) --> ( Base ` Y ) ) |
| 58 | fvexd | |- ( ph -> ( Base ` X ) e. _V ) |
|
| 59 | 51 58 | elmapd | |- ( ph -> ( F e. ( ( Base ` Y ) ^m ( Base ` X ) ) <-> F : ( Base ` X ) --> ( Base ` Y ) ) ) |
| 60 | 57 59 | mpbird | |- ( ph -> F e. ( ( Base ` Y ) ^m ( Base ` X ) ) ) |
| 61 | coexg | |- ( ( G e. ( ( Base ` Z ) ^m ( Base ` Y ) ) /\ F e. ( ( Base ` Y ) ^m ( Base ` X ) ) ) -> ( G o. F ) e. _V ) |
|
| 62 | 53 60 61 | syl2anc | |- ( ph -> ( G o. F ) e. _V ) |
| 63 | 39 43 53 60 62 | ovmpod | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |