This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | erprt | ⊢ ( ∼ Er 𝑋 → Prt ( 𝐴 / ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( ∼ Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / ∼ ) ∧ 𝑦 ∈ ( 𝐴 / ∼ ) ) ) → ∼ Er 𝑋 ) | |
| 2 | simprl | ⊢ ( ( ∼ Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / ∼ ) ∧ 𝑦 ∈ ( 𝐴 / ∼ ) ) ) → 𝑥 ∈ ( 𝐴 / ∼ ) ) | |
| 3 | simprr | ⊢ ( ( ∼ Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / ∼ ) ∧ 𝑦 ∈ ( 𝐴 / ∼ ) ) ) → 𝑦 ∈ ( 𝐴 / ∼ ) ) | |
| 4 | 1 2 3 | qsdisj | ⊢ ( ( ∼ Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / ∼ ) ∧ 𝑦 ∈ ( 𝐴 / ∼ ) ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 5 | 4 | ralrimivva | ⊢ ( ∼ Er 𝑋 → ∀ 𝑥 ∈ ( 𝐴 / ∼ ) ∀ 𝑦 ∈ ( 𝐴 / ∼ ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 6 | df-prt | ⊢ ( Prt ( 𝐴 / ∼ ) ↔ ∀ 𝑥 ∈ ( 𝐴 / ∼ ) ∀ 𝑦 ∈ ( 𝐴 / ∼ ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( ∼ Er 𝑋 → Prt ( 𝐴 / ∼ ) ) |