This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | erprt | |- ( .~ Er X -> Prt ( A /. .~ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( .~ Er X /\ ( x e. ( A /. .~ ) /\ y e. ( A /. .~ ) ) ) -> .~ Er X ) |
|
| 2 | simprl | |- ( ( .~ Er X /\ ( x e. ( A /. .~ ) /\ y e. ( A /. .~ ) ) ) -> x e. ( A /. .~ ) ) |
|
| 3 | simprr | |- ( ( .~ Er X /\ ( x e. ( A /. .~ ) /\ y e. ( A /. .~ ) ) ) -> y e. ( A /. .~ ) ) |
|
| 4 | 1 2 3 | qsdisj | |- ( ( .~ Er X /\ ( x e. ( A /. .~ ) /\ y e. ( A /. .~ ) ) ) -> ( x = y \/ ( x i^i y ) = (/) ) ) |
| 5 | 4 | ralrimivva | |- ( .~ Er X -> A. x e. ( A /. .~ ) A. y e. ( A /. .~ ) ( x = y \/ ( x i^i y ) = (/) ) ) |
| 6 | df-prt | |- ( Prt ( A /. .~ ) <-> A. x e. ( A /. .~ ) A. y e. ( A /. .~ ) ( x = y \/ ( x i^i y ) = (/) ) ) |
|
| 7 | 5 6 | sylibr | |- ( .~ Er X -> Prt ( A /. .~ ) ) |