This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by AV, 12-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ercpbl.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | |
| ercpbl.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑊 ) | ||
| ercpbl.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | ||
| erlecpbl.e | ⊢ ( 𝜑 → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 𝑁 𝐵 ↔ 𝐶 𝑁 𝐷 ) ) ) | ||
| Assertion | erlecpbl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ) → ( 𝐴 𝑁 𝐵 ↔ 𝐶 𝑁 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | |
| 2 | ercpbl.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑊 ) | |
| 3 | ercpbl.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | |
| 4 | erlecpbl.e | ⊢ ( 𝜑 → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 𝑁 𝐵 ↔ 𝐶 𝑁 𝐷 ) ) ) | |
| 5 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ∼ Er 𝑉 ) |
| 6 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑉 ∈ 𝑊 ) |
| 7 | simp2l | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) | |
| 8 | 5 6 3 7 | ercpbllem | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐴 ∼ 𝐶 ) ) |
| 9 | simp2r | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 10 | 5 6 3 9 | ercpbllem | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ↔ 𝐵 ∼ 𝐷 ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ) ↔ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) ) |
| 12 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 𝑁 𝐵 ↔ 𝐶 𝑁 𝐷 ) ) ) |
| 13 | 11 12 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐷 ) ) → ( 𝐴 𝑁 𝐵 ↔ 𝐶 𝑁 𝐷 ) ) ) |