This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by AV, 12-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ercpbl.r | |- ( ph -> .~ Er V ) |
|
| ercpbl.v | |- ( ph -> V e. W ) |
||
| ercpbl.f | |- F = ( x e. V |-> [ x ] .~ ) |
||
| erlecpbl.e | |- ( ph -> ( ( A .~ C /\ B .~ D ) -> ( A N B <-> C N D ) ) ) |
||
| Assertion | erlecpbl | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) -> ( A N B <-> C N D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.r | |- ( ph -> .~ Er V ) |
|
| 2 | ercpbl.v | |- ( ph -> V e. W ) |
|
| 3 | ercpbl.f | |- F = ( x e. V |-> [ x ] .~ ) |
|
| 4 | erlecpbl.e | |- ( ph -> ( ( A .~ C /\ B .~ D ) -> ( A N B <-> C N D ) ) ) |
|
| 5 | 1 | 3ad2ant1 | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> .~ Er V ) |
| 6 | 2 | 3ad2ant1 | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> V e. W ) |
| 7 | simp2l | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> A e. V ) |
|
| 8 | 5 6 3 7 | ercpbllem | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( F ` A ) = ( F ` C ) <-> A .~ C ) ) |
| 9 | simp2r | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> B e. V ) |
|
| 10 | 5 6 3 9 | ercpbllem | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( F ` B ) = ( F ` D ) <-> B .~ D ) ) |
| 11 | 8 10 | anbi12d | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) <-> ( A .~ C /\ B .~ D ) ) ) |
| 12 | 4 | 3ad2ant1 | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .~ C /\ B .~ D ) -> ( A N B <-> C N D ) ) ) |
| 13 | 11 12 | sylbid | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) -> ( A N B <-> C N D ) ) ) |