This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eqvrelqseqdisj4

Description: Lemma for petincnvepres2 . (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion eqvrelqseqdisj4 ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( 𝑆 ∩ ( E ↾ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj3 ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( E ↾ 𝐴 ) )
2 disjimin ( Disj ( E ↾ 𝐴 ) → Disj ( 𝑆 ∩ ( E ↾ 𝐴 ) ) )
3 1 2 syl ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( 𝑆 ∩ ( E ↾ 𝐴 ) ) )