This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eqvrelqseqdisj4

Description: Lemma for petincnvepres2 . (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion eqvrelqseqdisj4 EqvRel R B / R = A Disj S E -1 A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj3 EqvRel R B / R = A Disj E -1 A
2 disjimin Disj E -1 A Disj S E -1 A
3 1 2 syl EqvRel R B / R = A Disj S E -1 A