This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqvreleqd.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
| Assertion | eqvreleqd | ⊢ ( 𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreleqd.1 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
| 2 | eqvreleq | ⊢ ( 𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) ) |