This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eqvreleqd

Description: Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Hypothesis eqvreleqd.1 φ R = S
Assertion eqvreleqd φ EqvRel R EqvRel S

Proof

Step Hyp Ref Expression
1 eqvreleqd.1 φ R = S
2 eqvreleq R = S EqvRel R EqvRel S
3 1 2 syl φ EqvRel R EqvRel S