This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of cosets by R is symmetric, see dfsymrel3 . (Contributed by Peter Mazsa, 28-Mar-2019) (Revised by Peter Mazsa, 17-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symrelcoss3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ∧ Rel ≀ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcosscnvcoss | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ≀ 𝑅 𝑦 ↔ 𝑦 ≀ 𝑅 𝑥 ) ) | |
| 2 | 1 | el2v | ⊢ ( 𝑥 ≀ 𝑅 𝑦 ↔ 𝑦 ≀ 𝑅 𝑥 ) |
| 3 | 2 | biimpi | ⊢ ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) |
| 4 | 3 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) |
| 5 | relcoss | ⊢ Rel ≀ 𝑅 | |
| 6 | 4 5 | pm3.2i | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ≀ 𝑅 𝑦 → 𝑦 ≀ 𝑅 𝑥 ) ∧ Rel ≀ 𝑅 ) |