This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a complex number equals its own negative, it is zero. One-way deduction form of eqneg . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqnegad.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| eqnegad.2 | ⊢ ( 𝜑 → 𝐴 = - 𝐴 ) | ||
| Assertion | eqnegad | ⊢ ( 𝜑 → 𝐴 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnegad.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | eqnegad.2 | ⊢ ( 𝜑 → 𝐴 = - 𝐴 ) | |
| 3 | 1 | eqnegd | ⊢ ( 𝜑 → ( 𝐴 = - 𝐴 ↔ 𝐴 = 0 ) ) |
| 4 | 2 3 | mpbid | ⊢ ( 𝜑 → 𝐴 = 0 ) |