This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of enssdom as of 10-Feb-2026. (Contributed by NM, 31-Mar-1998) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enssdomOLD | ⊢ ≈ ⊆ ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | ⊢ Rel ≈ | |
| 2 | f1of1 | ⊢ ( 𝑓 : 𝑥 –1-1-onto→ 𝑦 → 𝑓 : 𝑥 –1-1→ 𝑦 ) | |
| 3 | 2 | eximi | ⊢ ( ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 → ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦 ) |
| 4 | opabidw | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 } ↔ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 ) | |
| 5 | opabidw | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦 } ↔ ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦 ) | |
| 6 | 3 4 5 | 3imtr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 } → 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦 } ) |
| 7 | df-en | ⊢ ≈ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 } | |
| 8 | 7 | eleq2i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ≈ ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 } ) |
| 9 | df-dom | ⊢ ≼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦 } | |
| 10 | 9 | eleq2i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ≼ ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 𝑓 : 𝑥 –1-1→ 𝑦 } ) |
| 11 | 6 8 10 | 3imtr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ≈ → 〈 𝑥 , 𝑦 〉 ∈ ≼ ) |
| 12 | 1 11 | relssi | ⊢ ≈ ⊆ ≼ |