This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of enssdom as of 10-Feb-2026. (Contributed by NM, 31-Mar-1998) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enssdomOLD | |- ~~ C_ ~<_ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | |- Rel ~~ |
|
| 2 | f1of1 | |- ( f : x -1-1-onto-> y -> f : x -1-1-> y ) |
|
| 3 | 2 | eximi | |- ( E. f f : x -1-1-onto-> y -> E. f f : x -1-1-> y ) |
| 4 | opabidw | |- ( <. x , y >. e. { <. x , y >. | E. f f : x -1-1-onto-> y } <-> E. f f : x -1-1-onto-> y ) |
|
| 5 | opabidw | |- ( <. x , y >. e. { <. x , y >. | E. f f : x -1-1-> y } <-> E. f f : x -1-1-> y ) |
|
| 6 | 3 4 5 | 3imtr4i | |- ( <. x , y >. e. { <. x , y >. | E. f f : x -1-1-onto-> y } -> <. x , y >. e. { <. x , y >. | E. f f : x -1-1-> y } ) |
| 7 | df-en | |- ~~ = { <. x , y >. | E. f f : x -1-1-onto-> y } |
|
| 8 | 7 | eleq2i | |- ( <. x , y >. e. ~~ <-> <. x , y >. e. { <. x , y >. | E. f f : x -1-1-onto-> y } ) |
| 9 | df-dom | |- ~<_ = { <. x , y >. | E. f f : x -1-1-> y } |
|
| 10 | 9 | eleq2i | |- ( <. x , y >. e. ~<_ <-> <. x , y >. e. { <. x , y >. | E. f f : x -1-1-> y } ) |
| 11 | 6 8 10 | 3imtr4i | |- ( <. x , y >. e. ~~ -> <. x , y >. e. ~<_ ) |
| 12 | 1 11 | relssi | |- ~~ C_ ~<_ |