This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltg4i | |- ( A e. ( topGen ` B ) -> A = U. ( B i^i ~P A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | |- ( A e. ( topGen ` B ) -> B e. dom topGen ) |
|
| 2 | eltg | |- ( B e. dom topGen -> ( A e. ( topGen ` B ) <-> A C_ U. ( B i^i ~P A ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. ( topGen ` B ) -> ( A e. ( topGen ` B ) <-> A C_ U. ( B i^i ~P A ) ) ) |
| 4 | 3 | ibi | |- ( A e. ( topGen ` B ) -> A C_ U. ( B i^i ~P A ) ) |
| 5 | inss2 | |- ( B i^i ~P A ) C_ ~P A |
|
| 6 | 5 | unissi | |- U. ( B i^i ~P A ) C_ U. ~P A |
| 7 | unipw | |- U. ~P A = A |
|
| 8 | 6 7 | sseqtri | |- U. ( B i^i ~P A ) C_ A |
| 9 | 8 | a1i | |- ( A e. ( topGen ` B ) -> U. ( B i^i ~P A ) C_ A ) |
| 10 | 4 9 | eqssd | |- ( A e. ( topGen ` B ) -> A = U. ( B i^i ~P A ) ) |