This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcbas.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| ringcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| ringcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| ringchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| ringchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | elringchom | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcbas.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 2 | ringcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | ringcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | ringchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | ringchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ringchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | 1 2 3 4 5 6 | ringchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
| 8 | 7 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 11 | 9 10 | rhmf | ⊢ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 12 | 8 11 | biimtrdi | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |