This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcbas.c | |- C = ( RingCat ` U ) |
|
| ringcbas.b | |- B = ( Base ` C ) |
||
| ringcbas.u | |- ( ph -> U e. V ) |
||
| ringchomfval.h | |- H = ( Hom ` C ) |
||
| ringchom.x | |- ( ph -> X e. B ) |
||
| ringchom.y | |- ( ph -> Y e. B ) |
||
| Assertion | elringchom | |- ( ph -> ( F e. ( X H Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcbas.c | |- C = ( RingCat ` U ) |
|
| 2 | ringcbas.b | |- B = ( Base ` C ) |
|
| 3 | ringcbas.u | |- ( ph -> U e. V ) |
|
| 4 | ringchomfval.h | |- H = ( Hom ` C ) |
|
| 5 | ringchom.x | |- ( ph -> X e. B ) |
|
| 6 | ringchom.y | |- ( ph -> Y e. B ) |
|
| 7 | 1 2 3 4 5 6 | ringchom | |- ( ph -> ( X H Y ) = ( X RingHom Y ) ) |
| 8 | 7 | eleq2d | |- ( ph -> ( F e. ( X H Y ) <-> F e. ( X RingHom Y ) ) ) |
| 9 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 10 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 11 | 9 10 | rhmf | |- ( F e. ( X RingHom Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) |
| 12 | 8 11 | biimtrdi | |- ( ph -> ( F e. ( X H Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) ) |