This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrefrels3 | ⊢ ( 𝑅 ∈ RefRels ↔ ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ 𝑅 ∈ Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels3 | ⊢ RefRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦 → 𝑥 𝑟 𝑦 ) } | |
| 2 | dmeq | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) | |
| 3 | rneq | ⊢ ( 𝑟 = 𝑅 → ran 𝑟 = ran 𝑅 ) | |
| 4 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 5 | 4 | imbi2d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 = 𝑦 → 𝑥 𝑟 𝑦 ) ↔ ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) ) |
| 6 | 3 5 | raleqbidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦 → 𝑥 𝑟 𝑦 ) ↔ ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) ) |
| 7 | 2 6 | raleqbidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 = 𝑦 → 𝑥 𝑟 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) ) |
| 8 | 1 7 | rabeqel | ⊢ ( 𝑅 ∈ RefRels ↔ ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ 𝑅 ∈ Rels ) ) |