This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrefrels3 | |- ( R e. RefRels <-> ( A. x e. dom R A. y e. ran R ( x = y -> x R y ) /\ R e. Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrels3 | |- RefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x = y -> x r y ) } |
|
| 2 | dmeq | |- ( r = R -> dom r = dom R ) |
|
| 3 | rneq | |- ( r = R -> ran r = ran R ) |
|
| 4 | breq | |- ( r = R -> ( x r y <-> x R y ) ) |
|
| 5 | 4 | imbi2d | |- ( r = R -> ( ( x = y -> x r y ) <-> ( x = y -> x R y ) ) ) |
| 6 | 3 5 | raleqbidv | |- ( r = R -> ( A. y e. ran r ( x = y -> x r y ) <-> A. y e. ran R ( x = y -> x R y ) ) ) |
| 7 | 2 6 | raleqbidv | |- ( r = R -> ( A. x e. dom r A. y e. ran r ( x = y -> x r y ) <-> A. x e. dom R A. y e. ran R ( x = y -> x R y ) ) ) |
| 8 | 1 7 | rabeqel | |- ( R e. RefRels <-> ( A. x e. dom R A. y e. ran R ( x = y -> x R y ) /\ R e. Rels ) ) |