This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: fresaun transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elmapresaun | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi | ⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐶 ) | |
| 2 | elmapi | ⊢ ( 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) → 𝐺 : 𝐵 ⟶ 𝐶 ) | |
| 3 | id | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 4 | fresaun | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) | |
| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
| 6 | elmapex | ⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) → ( 𝐶 ∈ V ∧ 𝐴 ∈ V ) ) | |
| 7 | 6 | simpld | ⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) → 𝐶 ∈ V ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐶 ∈ V ) |
| 9 | 6 | simprd | ⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) → 𝐴 ∈ V ) |
| 10 | elmapex | ⊢ ( 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) → ( 𝐶 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 11 | 10 | simprd | ⊢ ( 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) → 𝐵 ∈ V ) |
| 12 | unexg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 13 | 9 11 12 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 15 | 8 14 | elmapd | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
| 16 | 5 15 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ) |