This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018) (Proof shortened by OpenAI, 25-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzmlbm | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 − 𝑀 ) ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | uznn0sub | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 − 𝑀 ) ∈ ℕ0 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 − 𝑀 ) ∈ ℕ0 ) |
| 4 | elfzuz2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | uznn0sub | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 7 | elfzelz | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 8 | 7 | zred | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ℝ ) |
| 9 | elfzel2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 10 | 9 | zred | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ℝ ) |
| 11 | elfzel1 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℤ ) | |
| 12 | 11 | zred | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ∈ ℝ ) |
| 13 | elfzle2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ≤ 𝑁 ) | |
| 14 | 8 10 12 13 | lesub1dd | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 − 𝑀 ) ≤ ( 𝑁 − 𝑀 ) ) |
| 15 | elfz2nn0 | ⊢ ( ( 𝐾 − 𝑀 ) ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ↔ ( ( 𝐾 − 𝑀 ) ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ∧ ( 𝐾 − 𝑀 ) ≤ ( 𝑁 − 𝑀 ) ) ) | |
| 16 | 3 6 14 15 | syl3anbrc | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 − 𝑀 ) ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) |