This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmxrncnvepres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres3 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ≠ ∅ ) ↔ ( ( 𝐵 ∈ 𝐴 ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ∧ 𝐵 ≠ ∅ ) ) ) |
| 3 | dmxrncnvepres | ⊢ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = ( dom ( 𝑅 ↾ 𝐴 ) ∖ { ∅ } ) | |
| 4 | 3 | eleq2i | ⊢ ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) ∖ { ∅ } ) ) |
| 5 | eldifsn | ⊢ ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) ∖ { ∅ } ) ↔ ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ≠ ∅ ) ) | |
| 6 | 4 5 | bitri | ⊢ ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ≠ ∅ ) ) |
| 7 | 3anan32 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ↔ ( ( 𝐵 ∈ 𝐴 ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ∧ 𝐵 ≠ ∅ ) ) | |
| 8 | 2 6 7 | 3bitr4g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) ) |